Stability for Solutions of Wave Equations with C1,1 Coefficients
نویسنده
چکیده
We consider the stable dependence of solutions to wave equations on metrics in C class. The main result states that solutions depend uniformly continuously on the metric, when the Cauchy data is given in a range of Sobolev spaces. The proof is constructive and uses the wave packet approach to hyperbolic equations.
منابع مشابه
Strichartz Estimates for Wave Equations with Coefficients of Sobolev Regularity
Wave packet techniques provide an effective method for proving Strichartz estimates on solutions to wave equations whose coefficients are not smooth. We use such methods to show that the existing results for C1,1 and C1,α coefficients can be improved when the coefficients of the wave operator lie in a Sobolev space of sufficiently high order.
متن کاملTopological soliton solutions of the some nonlinear partial differential equations
In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...
متن کاملContinuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کاملNumerical studies of non-local hyperbolic partial differential equations using collocation methods
The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...
متن کاملExact solutions for wave-like equations by differential transform method
Differential transform method has been applied to solve many functional equations so far. In this article, we have used this method to solve wave-like equations. Differential transform method is capable of reducing the size of computational work. Exact solutions can also be achieved by the known forms of the series solutions. Some examples are prepared to show theefficiency and simplicity of th...
متن کامل